据悉,在2019年认定的首批612个“新工科”研究与实践项目中,布局建设了57个人工智能类项目。截至2019年12月,全国共有71所高校围绕人工智能领域设置了86个二级学科或交叉学科。仅在今年5月,就有南开大学、天津大学、南京大学、吉林大学四所高校相继成立了人工智能学院。

因此,《新一代人工智能发展规划》特别强调,“把高端人才队伍建设作为人工智能发展的重中之重”“完善人工智能领域学科布局”“尽快在试点院校建立人工智能学院”等。今年4月,教育部印发的《高等学院人工智能创新行动计划》也要求,到2030年,高校要成为建设世界主要人工智能创新中心的核心力量和引领新一代人工智能发展的人才高地,为我国跻身创新型国家前列提供科技支撑和人才保障。

不可盲目跟风入局

高校在开设相关专业时,应该组织教授委员会、学术委员会,结合国家的人才政策、产业发展对人才的需求、国内外其他高校同类专业人才培养的情况,就本校开设这方面的专业有无现实条件,怎样进行师资建设、课程建设,形成专业特色等,进行充分论证。

但在这样的背景下,我们是否应该给人工智能热“降降温”,进行一些“冷”思考?

比如,南开大学人工智能学院是基于智能科学与技术专业而建的。该专业设立于2004年,当时经过了近两年的慎重筹备,重点在课程设置、教学实践等方面进行了精心建设,2006年才开始招收第一届本科生。“虽然经过十多年的发展已经相对稳定了,但即便如此,南开这几年也仍然在根据人工智能学科的发展反复优化课程建设。人工智能学院要想发展得好,课程建设是尤为重要的。”

“这种形势是完全符合人工智能学科特点与发展规律的。”在方勇纯看来,人工智能本身就是一个高度交叉的复合型学科,各个学校选择不同的切入点进行建设非常自然;另一方面,新一代人工智能技术的飞速发展,以及各高校建设人工智能学院都是最近的事情,各方面的情况尚未成熟且都处于高速发展期,因此也注定了在课程设置、教学规划等方面还存在不少发力空间。

“人工智能产业发展最大的瓶颈是人才。现在已经进入全球争抢人工智能人才的时代,高水平人才培养的‘造血功能’将直接影响人工智能产业的核心竞争力。”南京大学人工智能学院院长周志华在接受媒体采访时表示。

课程建设尤为重要

“事实上,即便不考虑课程数量,仅从已开设课程的内容来说,也与人工智能人才培养的需求有很大距离。”周志华说,比如人工智能所需的线性代数+矩阵论,目前计算机学科线性代数内容很浅,通常不开设矩阵论,很多学生甚至没接触过矩阵求导,这对机器学习等人工智能核心课程的学习造成很大障碍。

说起人工智能(AI),也许公众并不觉得陌生。因为近年来,无论是AlphaGo在围棋比赛中战胜人类冠军李世石和柯洁,还是无人驾驶汽车获发测试牌照,类似新闻事件都贴着一个同样的标签:人工智能。

实际上,根据教育部2019年的《普通高等学校本科专业目录》,506种本科专业中一共有4个涉及“智能”,分别为计算机类中的智能科学与技术、土木类中的建筑电气与智能化、电气类中的智能电网信息工程和电气工程与智能控制。

多种因素推动热潮

可以说,无论是世界科技发展的趋势还是国家经济建设的需要,都为高校设立并建设好人工智能学院或专业提供了非常好的大环境。